含-α诱导类型三角函数的不定积分
来源:网络收集 点击: 时间:2024-07-26sin(-α)=-sin α
cos(-α)=cos α
tan(-α)=-tan α
cot(-α)=-cot α
sec(-α)=sec α
csc(-α)=-csc α
2/2图例解析如下:

∫sin(-α)dα
=-∫sin(-α)d(-α)
=cos(-α)+c
=cosα+c
2/2图例解析如下:

∫cos(-α)dα
=-∫cos(-α)d(-α)
=-sin(-α)+c
=sinα+c
2/2图例解析如下:

∫tan(-α)dα
=-∫tan(-α)d(-α)
=-∫
=∫d cos(-α)/cos(-α)
=ln|cos(-α)|+c
=ln|cosα|+c
2/2图例解析如下:

∫cot(-α)dα
=-∫cot(-α)d(-α)
=-∫
=-∫d sin(-α)/sin(-α)
=-ln|sin(-α)|+c
=-ln|sinα|+c
2/2图例解析如下:

∫sec(-α)dα
=-∫sec(-α)dα
=-∫d(-α)/ cos(-α)
=-∫cos(-α)d(-α)/ ^2
=-∫dsin(-α)/
=-(1/2)
=-(1/2)ln{/ }+c
=-(1/2)ln+c
=-(1/2)ln+c
=-ln|(1+sin(-α))/cos(-α)|+c
=-ln|(1-sinα)/cosα|+c
=-ln|secα-tanα|+c
2/2图例解析如下:

∫csc(-α)dα
=-∫csc(-α)d(-α)
=-∫d(-α)/ sin(-α)
=-∫sin(-α)d(-α)/ ^2
=∫dcos(-α)/
=∫dcos(-α)/
=(1/2)
=(1/2)ln+c
=(1/2)ln+c
=ln|(1+cos(-α))/sin(-α)|+c
=ln|(1+cosα)/sinα|+c
=ln|cscα+cota|+c
2/2图例解析如下:

版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_1011264.html