素数阶群一定是循环群,为什么一个群有n阶元就能推出来群是n阶循环群
来源:网络收集 点击: 时间:2024-08-26【导读】:
设p为素数,|G|=p,由于G的所有元素的阶都可以被p整除,故任取a∈G,a的阶要么是1要么是p,若a≠1,则a的阶=p,如此a^p=1且a、a^2、a^3…a^(p-1)∈G,又因为|G|=p,故G={1,a,a^2…a^(p-1)},这就证明了G是循环群。
循环群是一种很重要的群,也是已被完全解决了的一类群。其定义为若一个群G的每一个元都是G的某一个固定元a的乘方,则称G为循环群,记作G=(a),a称为G的一个生成元。循环群有无阶循环群和有阶循环群两种类型。
由于群之间的同构关系具有反身性、对称性和传递性,故这个定理告诉我们,凡无限循环群都彼此同构,凡有限同阶循环群都彼此同构,而不同阶的群,由于不能建立双射,当然不能同构。这样抽象地看,即在同构意义下,循环群只有两种,即整数加群和模n的剩余类加群。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_1158279.html
上一篇:华为手机新闻资讯怎么关闭
下一篇:抖音怎么查看自己的粉丝牌?