广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    可导和可微的关系是什么

    来源:网络收集  点击:  时间:2024-03-06
    【导读】:

    一元函数中可导与可微等价,即为充分必要条件。多元函数可微必可导,而反之不成立,即可导是可微的充分不必要条件。

    拓展资料:

    微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

    导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。

    可微和可导对一元单值函数来说是等价的,但是对于一般的函数来说是不等价的。一个这样的多元向量函数在一点可微,当且仅当它的所有偏导数在那一点存在并连续。这是因为导数和微分本质是两种东西,前者是函数在某个方向上的变化率,后者是映射的局部线性近似。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_255077.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-05 19:49:21  耗时:0.027
    0.0272s