广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    导数与极限有区别吗

    来源:网络收集  点击:  时间:2024-03-10
    【导读】:

    有区别,列举如下:

    1、定义不同

    导数:当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。

    极限:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程。

    此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

    2、本质不同

    一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

    极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

    3、起源不同

    导数:大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是导数f(A)。

    极限:古希腊人的穷竭法蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。

    到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。

    4、几何意义不同

    如上图所示,导数在图中的直观表现是点P处的直线斜率。

    极限的直观表示就是函数图像无限趋近于某一常数但始终达不到,如y=a^x的图像。

    参考资料来源:百度百科-导数

    参考资料来源:百度百科-极限

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_310515.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-05 09:31:16  耗时:0.030
    0.0302s