画复合分式函数y=(3x³-2)/(x+1)³图像的主要步骤
来源:网络收集 点击: 时间:2024-04-17根据分数函数的定义要求,必须分母整体不为0,则x+1≠0,即可知函数自变量的取值,进一步可写出函数的定义域。

在高中数学里,定义域的定义为:设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
函数的单调性1/2函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。

如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f(x)0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f(x)0,则称函数y=f(x)在区间D内单调减少。
函数的凸凹性1/2通过函数的二阶导数,解析函数的凸凹区间。

如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凸函数的充要条件是f(x)=0。

计算函数在无穷远处和函数的点断点处的极限:

极限指某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”,极限是一种“变化状态”的描述。
函数的示意图1/2根据函数单调性、凸凹性等性质,列举函数在定义域区间上部分关键点坐标。

综合以上函数的定义域、单调性、凸凹性、极限性质,并结合函数的定义区间和单调、凸凹区间,即可画出函数的示意图如下:

版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_534360.html