广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    能说任何两个有理数之间都有无理数吗?为什么

    来源:网络收集  点击:  时间:2024-04-29
    【导读】:

    确实是这样的,数轴上,任何两个有理数间,都有无理数的存在。假设有两个有理数x1,x2,x1 x2。

    有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

    有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

    有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作ab或ba。任何两个不相等的有理数都可以比较大小。

    有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_621820.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-06 14:58:57  耗时:0.027
    0.0269s