泰勒公式推导过程是什么
来源:网络收集 点击: 时间:2024-02-18【导读】:
泰勒公式推导:将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。
其中,Rn(x)=f(n+1)δ(x-x0)^(n+1)/(n+1)!,此处的δ为x0与x之间的某个值。f(x)称为n阶泰勒公式,其中,P(x)=f(x0)+f'(x0)(x-x0)+...+f(n)(x0)(x-x0)^n/n!称为n次泰勒多项式。
在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:
(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。
(2)应用泰勒公式可以证明区间上的函数等式或不等式。
(3)应用泰勒公式可以进行更加精密的近似计算。
(4)应用泰勒公式可以求解一些极限。
(5)应用泰勒公式可以计算高阶导数的数值。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_70237.html