微分方程解法总结是什么
来源:网络收集 点击: 时间:2024-05-09【导读】:
微分方程解法总结:
一、g(y)dy=f(x)dx形式,可分离变量的微分方程,直接分离然后积分。
二、可化为dy/dx=f(y/x)的齐次方程,换元分离变量。
三、一阶线性微分方程,dy/dx+P(x)y=Q(x)先求其对应的一阶齐次方程,然后用常数变易法带换u(x);得到通解y=e^-∫P(x)dx{∫Q(x)dx+C}。
相关信息:
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。
物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外微分方程在化学、工程学、经济学和人口统计等领域都有应用。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_715106.html