广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    Mathematica应用——绘制精美的3D图形

    来源:网络收集  点击:  时间:2024-05-19
    【导读】:
    Mathematica可以作出很多复杂的方程的曲线和曲面。下面,我们就来看看在三维空间里面的一些比较容易写出代数方程的曲面!工具/原料more电脑Mathematica方法/步骤1/6分步阅读

    第一个,Bour极小曲面。

    下面代码演示了Bour极小曲面在a=4、b=2、c=3/2时的情形,并展示了其他情形的变化。

    2/6

    第二个,Boy曲面。

    Boy曲面的表面是一个不可定向曲面,你可以顺利的在内表面上跑到外表面上。改变参数a、b、c的取值,可以观察到不一样的情景!

    3/6

    彩色的蛋壳。

    用参数和不同的着色手段,可以绘制出精美的彩色蛋壳,真是好看!

    第一个蛋壳的着色方法是Gradients——渐变;第二个蛋壳使用的是Sinusoids着色法(窦状着色法)。

    还可以用其他的着色方法,比如:斑马色(ZebraColor)、多项式着色(Colored Using Polynomials)、黎曼函数着色(Colored Using the Riemann Zeta Function)、球极坐标着色(Spherical Coordinates)……

    4/6

    漂亮的贝壳。下面的代码,绘制了某种精美的贝壳曲面,还能演示贝壳的生长过程!

    5/6

    超椭球曲面。

    这个就要涉及到超椭球函数,不解释,只欣赏!

    6/6

    类似于球极函数的图像,但其实是采用复变函数的方法绘制的!

    注意事项

    三维曲面的内容很丰富,欲学习相关内容,请先自学射影几何、微分几何和曲面论!

    MATHEMATICA曲面
    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_806055.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-07 01:57:07  耗时:0.025
    0.0246s