含2kπ+α诱导类型三角函数的不定积分
来源:网络收集 点击: 时间:2024-07-16sin(2kπ+α)=sin α
cos(2kπ+α)=cos α
tan(2kπ+α)=tan α
cot(2kπ+α)=cot α
sec(2kπ+α)=sec α
csc(2kπ+α)=csc α

∫sin(2kπ+α)dα
=∫sin(2kπ+α)d(2kπ+α)
=-cos(2kπ+α)+c
=-cosα+c
2/2图例解析如下:

∫cos(2kπ+α)dα
=∫cos(2kπ+α)d(2kπ+α)
=sina(2kπ+α)+c
=sinα+c
2/2图例解析如下:

∫tan(2kπ+α)dα
=∫
=-∫d cos(2kπ+α)/cos(2kπ+α)
=-ln|cos(2kπ+α)|+c
=-ln|cosα|+c
2/2图例解析如下:

∫ctg(2kπ+α)dα
=∫
=∫d sin(2kπ+α)/sin(2kπ+α)
=ln|sin(2kπ+α)|+c
=ln|sinα|+c
2/2图例解析如下:

∫sec(2kπ+α)dα
=∫dα/ cos(2kπ+α)
=∫d(2kπ+α)/ cos(2kπ+α)
=∫cos(2kπ+α)d(2kπ+α)/ ^2
=∫dsin(2kπ+α)/ {1-^2}
=∫dsin(2kπ+α)/ {}
=(1/2){∫dsin(2kπ+α)/ +∫dsin(2kπ+α)/ }
=(1/2)ln{/ }+c
=(1/2)ln+c
=(1/2)ln+c
=ln|(1+sinα)/cosα|+c
=ln|secα+tana|+c
2/2图例解析如下:

∫csc(2kπ+α)dα
=∫dα/ sin(2kπ+α)
=∫d(2kπ+α)/ sin(2kπ+α)
=∫sin(2kπ+α)d(2kπ+α)/ ^2
=-∫dcos(2kπ+α)/ {1-^2}
=-∫dcos(2kπ+α)/ {}
=-(1/2){∫dcos(2kπ+α)/ +∫dcos(2kπ+α)/ }
=-(1/2)ln{/ }+c
=-(1/2)ln+c
=-(1/2)ln+c
=-ln|(1+cosα)/sinα|+c
=-ln|cscα+ctga|+c
2/2图例解析如下:

版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_959907.html