广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    线性代数rank怎么求

    来源:网络收集  点击:  时间:2024-08-30
    【导读】:
    本篇文章让小黑带大家了解一下,线性代数rank怎么求?品牌型号:iPhone12系统版本:iOS15方法/步骤1/4分步阅读

    在线性代数中秩的定义:

    一个矩阵A的列秩是 A的线性无关的纵列的极大数目。类似地,行秩是 A的线性无关的横行的极大数目。

    矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A的秩。通常表示为 rk(A) 或 rank A。

    m× n矩阵的秩最大为 m和 n中的较小者。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足的。

    所以矩阵列空间、行空间的维度相等,并且为矩阵的秩不是偶合而是必然的。任意一个矩阵都可以经过一系列的初等行变换为阶梯形矩阵,而阶梯形矩阵的秩对于其中非零行的个数。

    所以矩阵秩的计算方法:用初等行变换把矩阵化为阶梯形,则该阶梯形矩阵中的非零行数就是所求矩阵的秩。

    例子如下:

    2/4

    矩阵的秩:定理:矩阵的行秩,列秩,秩都相等,初等变换不改变矩阵的秩,如果A可逆,则r(AB)=r(B),r(BA)=r(B),矩阵的乘积的秩Rab=min{Ra,Rb}。

    矩阵的秩是线性代数中的一个概念,在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

    3/4

    在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目,类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

    4/4

    引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n,当r(A)=n-2时,最高阶非零子式的阶数=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵,当r(A)=n-1时,最高阶非零子式的阶数=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零。

    注意事项

    个人观点,仅供参考。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_1171711.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-06 00:44:24  耗时:0.024
    0.0245s