广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    为什么可导不一定可微

    来源:网络收集  点击:  时间:2024-02-24
    【导读】:

    因为对一元函数来讲,可导必可微,可微必可导。但对多元函数来讲,可微是可偏导的充分不必要条件。

    可微是总体的、一般的、关于多的性质,可导是单一的、特殊的、关于“多”中的一的性质。一般成立,特殊必然成立;特殊成立,一般不一定成立,但特殊是一般的基础。在一元函数框架下,多即是一,那么特殊和一般在此条件下得到了统一。

    可微条件

    1、必要条件

    若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

    2、充分条件

    若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_133287.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-05 21:55:34  耗时:0.026
    0.0264s