洛朗级数展开式
来源:网络收集 点击: 时间:2024-03-06【导读】:
f(z)=1/5*。因为1|z|2,所以|z/2|1,|1/z|1。前两项,提出一个1/z,化成-z/z*1/(1+1/z)和2/z*1/(1+1/z)。
1/(1+1/z)就用公式1/(1-z)=1+z+z+...展开,用-1/z去换z即可。
第三项,提一个1/2,变成-1/2*1/(1-z/2),同样套上面的公式,只不过这次是用z/2去换z。三项都展开为幂级数之后,一般情况下你是没有办法合并成为一个幂级数的,所以一般来说写到这一步就完成了。当然你也可以把这个幂级数的前面几项写出来,后面打上省略号。
扩展资料:
积分路径γ是位于圆环A内的一条逆时针方向的可求长曲线,把c包围起来,在这个圆环内是全纯的(解析的)。的洛朗级数展开式在这个圆环内的任何地方都是正确的。
在右边的图中,该环用红色显示,其内有一合适的积分路径 。如果我们让是一个圆 ,其中 ,这就相当于要计算的限制到上的复傅里叶系数。这些积分不随轮廓的变形而改变是斯托克斯定理的直接结果。
在实践中,上述的积分公式可能不是计算给定的函数系数最实用的方法;相反,人们常常通过拼凑已知的泰勒展开式来求出洛朗级数。因为函数的洛朗展开式只要存在就是唯一的 ,实际上在圆环中任何与相等的,以上述形式表示的给定函数的表达式一定就是的洛朗展开式。
参考资料来源:百度百科-洛朗级数
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_272028.html
上一篇:卡西欧计算器怎么实现复数和虚数转化
下一篇:ie浏览器版本过低怎么升级