广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    两阶段最小二乘法第一阶段为什么加入原模型外生变量

    来源:网络收集  点击:  时间:2024-02-12
    【导读】:

    因为要提高参数估计的无偏性,两阶段最小二乘法用于检验有内生性变量的回归模型。工具变量法对于恰好识别的结构方程是有效的。

    但对过度识别方程虽然能够给出过度识别结构方程的参数估计,但这种方法不是有效的。其原因在于选择工具变量的任意性和失去了未被选用的前定变量所提供的信息。

    扩展资料:

    在实际应用二阶段最小二乘法时,第一阶段对约简型方程应用OLS法只需求出我们所需要的,并不需要求出相应的εit的值。第二阶段只需用代替所估计方程右边的yit即可应用OLS法,只不过这里的ε*it已不是原来uit罢了。综上所述,二阶段最小二乘法第一阶段的任务是产生一个工具变量。

    第二阶段的任务是通过一种特殊形式的工具变量法得出结构参数的一致估计量。

    两阶段最小二乘法的优点和缺点

    两阶段最小二乘法分析隐变量交互作用,对变量的分布没有限制。变量无论是正态分布,还是非正态分布都可以使用。这个优点使得2SLS方法在隐变量交互作用分析中受到重视。

    因为现方法应用时,可以直接利用原始数据,不必对原始数据进行转换,也不必拟合交叉乘积指示变量的度量为一程。更重要的是2SLS为一法可以在几乎所有的统计软件上实现。

    2SLS为一法的缺点是一次只能估计一个为方程,且由于其基于渐近自由分布的理论,所以要求较大的样本容量。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_32686.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-05 09:53:30  耗时:0.025
    0.0251s