cos的n次方的积分,积分区间是0到π/2。
来源:网络收集 点击: 时间:2024-04-03【导读】:
解题过程如下图:
本题通过分部积分法来解。
它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数。
扩展资料分部积分解题方法:
设函数f(x)、g(x)连续可导,对其乘积求导,有:
=f(x)g(x)+f(x)g(x)
上式两边求不定积分,得:
∫dx=∫f(x)g(x)dx+∫f(x)g(x)dx
得:
f(x)g(x)=∫g(x)df(x)+∫f(x)dg(x)
得:
∫f(x)dg(x)=f(x)g(x)-∫g(x)df(x)
写的更通俗些
令u=f(x),v=g(x),则微分du = f(x)dx、dv = g(x)dx
那么∫udv=uv-∫vdu
分部积分法通常用于被积函数为幂函数、指数函数、对数函数、三角函数、反三角函数的乘积的形式;u=f(x)、v=g(x)的选择也是容易积分的那个。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_417216.html
上一篇:苹果怎样设置微信置顶好友
下一篇:戒烟军团怎么解决常见问题