可导的含义是什么
来源:网络收集 点击: 时间:2024-02-15【导读】:
就是:若f(x)在x0处连续,则当a趋向于0时, /a存在极限, 则称f(x)在x0处可导。
可导与连续的关系:可导必连续,连续不一定可导。
可微与连续的关系:可微与可导是一样的。
可积与连续的关系:可积不一定连续,连续必定可积。
可导与可积的关系:可导一般可积,可积推不出一定可导。
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_41989.html
上一篇:王者荣耀要出的新皮肤
下一篇:放弃高考申请书是手写吗