刘维尔公式是什么
来源:网络收集 点击: 时间:2024-04-23【导读】:
公式如下:
此处w(x)是方程y(n)+p1(x)y(n-1)+pn-1(x)y+pn(x)y=0的任意n个解y1,y2对应的朗斯基行列式,x0是这n个解定义区间上的任意固定常数,c是任意常数。
相关内容解释:
简介:
多重积分是定积分的一类,它将定积分扩展到多元函数(多变量的函数),例如求f(x,y)或者f(x,y,z)类型的多元函数的积分。
正如单参数的正函数的定积分代表函数图像和x轴之间区域的面积一样,正的双变量函数的双重积分代表函数所定义的曲面和包含函数定义域的平面之间所夹的区域的体积。(注意同样的体积也可以通过三变量常函数f(x,y,z)=1在上述曲面和平面之间的区域中的三重积分得到。若有更多变量,则多维函数的多重积分给出超体积。
n元函数f(x1,x2,…,xn)在定义域D上的多重积分通常用嵌套的积分号按照演算的逆序标识(最左边的积分号最后计算),后面跟着被积函数和正常次序的积分参数(最右边的参数最后使用)。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_574427.html