A(6,0),B(0,1),C(0,0)的重心内心外心垂心坐标
来源:网络收集 点击: 时间:2024-05-03直角坐标系上显示,三点A(6,0),B(0,1),C(0,0),可以构成一个直角三角形。已知三点


由两点间距离公式,求出此时三角形三边AB,BC和AC的长。

三角形的重心即三条中线的交点,分别通过三个顶点与对边中点相连,
中线的交点即是重心,重心与中点的距离与重心顶点的距离比为1:2。

设重心G的坐标为(a,b),当三角形三个顶点分别为A(x1,y1),B(x2,y2),
C(x3,y3),根据上述定义,用定比分点求得:
a=(x1+x2+x3)/3;
b=(y1+y2+y3)/3。

对于本题,三角形为直角三角形,且A,B分别在坐标上,
C在坐标原点,则根据上述公式,该三角形的重心坐标为:
a=1/3(6+0+0)=2
b=1/3(0+1+0)=1/3
即重心坐标为:
G(2,1/3)

内心即内切圆的圆心,此时三角形三条边都与圆相切,圆心到三条边的距离相等,即内心到三角形三边的距离相等,因此内心是三角形三个角的角平分线交点。设内心N的坐标为(m,n),当三角形三个顶点分别为A(x1,y1),B(x2,y2),
C(x3,y3),由向量性质得aNA+bNB+cNC=0:
NA=(x1-m,y1-n);NB=(x2-m,y2-n);NC=(x3-m,y3-n);

m=(ax1+bx2+cx3)/(a+b+c);
n=(ay1+by2+cy3)/(a+b+c);
对于本题直角三角形,则:
m=(6+0+0)/(7+c);
n=(0+6+0)/(7+c).
则该直角三角形的内心M(m,n)为:
N(6,6)即:N(7-√37,7-√37)
7+c7+c22

垂心即三条高的交点,分别通过三个顶点作对边作垂线,垂线的交点即是垂心。对于本题,三角形为直角三角形,所以垂心即直角三角形的直角定点,故垂心为:H(0,0).

三角形四心内容重在定义理解
坐标三角形外心版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_657435.html