广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    与一元二次方程相关的几何题如何解?

    来源:网络收集  点击:  时间:2024-05-03
    【导读】:
    与一元二次方程相关的几何题怎样解?现简述如下。方法/步骤1/7分步阅读

    根据几何问题,分析关系后,构造一元二次方程是关键点。

    引入例题:

    已知三角形ABC的面积为S,直线l平行于BC,与AB、AC分别相交于点D、E,三角形BED的面积为k,求证:k小于等于S/4。

    2/7

    根据DE//BC,可以想到【平行线分线段成比例定理】

    3/7

    设AD/AB=AE/AC=x,其中x的取值为大于等于0且小于等于1。

    4/7

    所以,三角形ABE的面积:三角形ABC的面积=AE:AC=x

    则,三角形ABE的面积=xS。

    5/7

    有,三角形BDE的面积:三角形ABE的面积=BD/AB=(AB-AD)/AB=1-k。

    6/7

    所以,k=(1-x)*x*S

    S*x^2-S*x+k=0

    7/7

    转化为一元二次方程问题。

    由题意得,S^2-4*S*k不小于0。

    因为S0,所以,S-4*k不小于0。

    则,k小于等于S/4。

    注意事项

    根据几何问题分析关系,构造一元二次方程是关键。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_662637.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-05 01:56:20  耗时:0.038
    0.0379s