基础解系和极大线性无关组的关系是什么
来源:网络收集 点击: 时间:2024-05-10【导读】:
基础解系是一个极大无关组指的是基础解系是齐次线性方程组Ax=0所有解向量构成的向量组的一个极大无关组,如果你把它看成是一个向量组从而考虑它的秩的话,那它的秩恰好等于n-r(A)。
这里的r(A)指的是矩阵A的秩。也就是说,矩阵A的秩和齐次线性方程组Ax=0解向量组(在高等代数里面我们可以用解空间来描述)的秩满足两者的和等于n的关系。
极大线性无关组(maximal linearly independent system)是在线性空间中拥有向量个数最多的线性无关向量组。
一个向量组的极大线性无关组是其最本质的部分, 对许多问题的研究起着非常重要的作用。如确定矩阵的秩, 讨论线性方程组的基础解系等。
函数简介:
极大线性无关组(maximal linearly independent system)是线性空间的基对向量集的推广。设V是域P上的线性空间,S是V的子集。若S的一部分向量线性无关,但在这部分向量中,加上S的任一向量后都线性相关,则称这部分向量是S的一个极大线性无关组。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_730046.html
上一篇:韩式炸鸡甜辣酱的做法
下一篇:如何在OneNote中打开备份