广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    基础解系和极大线性无关组的关系是什么

    来源:网络收集  点击:  时间:2024-05-10
    【导读】:

    基础解系是一个极大无关组指的是基础解系是齐次线性方程组Ax=0所有解向量构成的向量组的一个极大无关组,如果你把它看成是一个向量组从而考虑它的秩的话,那它的秩恰好等于n-r(A)。

    这里的r(A)指的是矩阵A的秩。也就是说,矩阵A的秩和齐次线性方程组Ax=0解向量组(在高等代数里面我们可以用解空间来描述)的秩满足两者的和等于n的关系。

    极大线性无关组(maximal linearly independent system)是在线性空间中拥有向量个数最多的线性无关向量组。

    一个向量组的极大线性无关组是其最本质的部分, 对许多问题的研究起着非常重要的作用。如确定矩阵的秩, 讨论线性方程组的基础解系等。

    函数简介:

    极大线性无关组(maximal linearly independent system)是线性空间的基对向量集的推广。设V是域P上的线性空间,S是V的子集。若S的一部分向量线性无关,但在这部分向量中,加上S的任一向量后都线性相关,则称这部分向量是S的一个极大线性无关组。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_730046.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-06 12:15:09  耗时:0.024
    0.0243s