广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    如何解释spss因子分析的结果

    来源:网络收集  点击:  时间:2024-07-20
    【导读】:

    1.KMO和Bartlett的检验结果:

    首先是KMO的值为0.733,大于阈值0.5,所以说明了变量之间是存在相关性的,符合要求;然后是Bartlett球形检验的结果。

    在这里只需要看Sig.这一项,其值为0.000,所以小于0.05。那么也就是说,这份数据是可以进行因子分析的。

    2.公因子方差:

    公因子方差表的意思就是,每一个变量都可以用公因子表示,而公因子究竟能表达多少呢,其表达的大小就是公因子方差表中的“提取”。

    “提取”的值越大说明变量可以被公因子表达的越好,一般大于0.5即可以说是可以被表达,但是更好的是要求大于0.7才足以说明变量能被公因子表的很合理。

    在本例中可以看到,“提取”的值都是大于0.7的,所以变量可以被表达的很不错。

    3.解释的总方差和碎石图:

    简单地说,解释地总方差就是看因子对于变量解释的贡献率(可以理解为究竟需要多少因子才能把变量表达为100%)。

    这张表只需要看图中红框的一列,表示的就是贡献率,蓝框则代表四个因子就可以将变量表达到了91.151%,说明表达的还是不错的

    都要表达到90%以上才可以,否则就要调整因子数据。再看碎石图,也确实就是四个因子之后折线就变得平缓了。

    4.旋转成分矩阵:

    这一张表是用来看哪些变量可以包含在哪些因子里,一列一列地看:第一列,最大的值为0.917和0.772,分别对应的是细颗粒物和可吸入颗粒物。

    因此可以把因子归结为颗粒物。第二列,最大值为0.95对应着二氧化硫,因此可以把因子归结为硫化物。第三列,最大值为0.962,对应着臭氧。

    因此可以把因子归结为臭氧。第四列,最大值为0.754和0.571,分别对应着二氧化氮和一氧化碳。

    扩展资料

    因子分析与主成分分析的区别:

    主成分分析是试图寻找原有变量的一个线性组合。这个线性组合方差越大,那么该组合所携带的信息就越多。也就是说,主成分分析就是将原始数据的主要成分放大。

    因子分析,它是假设原有变量的背后存在着一个个隐藏的因子,这个因子可以可以包括原有变量中的一个或者几个,因子分析并不是原有变量的线性组合。

    因子分析还是非常好用的一种降维方式的,在SPSS中进行操作十分简单方便,结果一目了然。python也可以做因子分析,代码量也并不是很大。

    但是,python做因子分析时会有一些功能需要自己根据算法写,比如说KMO检验。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_977313.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-05 20:44:14  耗时:0.028
    0.0276s