柯西中值定理的基础证明题
来源:网络收集 点击: 时间:2024-04-08【导读】:
这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释,并尽可能与高中数学衔接(高等数学课程需要用到一些高中数学中不太重要的内容,如极坐标,我们会在用到时加以补充介绍)。 本系列文章适合作为初学高等数学的课堂同步辅导,高数期末复习以及考研第一轮复习时的参考资料。其中涉及的例题大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,难度适中,并包含一些考研数学中的经典题目。 既然是入门,就要舍去一些难度较大或不适合初学者的内容(例如用ε-δ语言证明极限,以及教材中多数定理的证明),有些较深入的问题(例如无穷大与无界的区别和联系,拉格朗日中值定理的证明思路等)我们会以专题文章的形式给出,供有兴趣的读者选读。 本系列上一篇见下面的“经验引用”:工具/原料more高等数学基础知识方法/步骤1/6分步阅读
2/6
3/6
4/6
5/6
6/6
注意事项
解柯西中值定理证明题的一般方法概述。

一个简单的问题。

多次运用柯西中值定理的问题。

巧妙选取柯西中值定理中的两个函数(请读者补充证明细节)。

证明不等式的问题。(本题用高中熟悉的求导判断单调性和极值的常规方法当然也可以证明。)

拓展阅读:用柯西中值定理证明展开到一次幂的泰勒公式。

感谢您的浏览,如果本经验对您有所帮助,欢迎您投票、转发、收藏和评论。
欢迎您继续阅读本系列的后续文章,后续文章更新后可在本人的经验主页找到。
学习高等数学考研数学大学数学版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_473202.html