广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    minitable三种正太性检验方法有什么区别

    来源:网络收集  点击:  时间:2024-04-04
    【导读】:
    使用minitable进行正态性检验时,弹出的对话框中,有三种正态性检验方法,具体这三种有什么区别,下面我们一起学习下:工具/原料moreminitable软件电脑方法/步骤1/5分步阅读

    首先,我们打开minitable软件,点击统计-基本统计量-正态性检验,进入检验界面

    2/5

    下面我们详细讲解三种方法:

    Anderson-Darling检验(A-D检验),是一种基于经验累积分布函数(ECDF)的算法,特别适用于小样本(当然也适用于大样本),AD值越小,表明分布对数据拟合度越好,A-D检验只适合特定的连续分布如:normal、lognormal、exponential、Weibull、logistic、extreme-value type 1。A-D检验是对K-S检验的一种修正,相比K-S检验它加重了对尾部数据的考量,K-S检验具有分布无关性,它的临界值并不依赖被测的特定分布,而A-D检验使用特定分布去计算临界值,这使得A-D检验具有更灵敏的优势。Anderson-Darling 检验选择此项将执行正态性的 Anderson-Darling 检验,此检验是将样本数据的经验累积分布函数与假设数据呈正态分布时期望的分布进行比较。如果实测差异足够大,该检验将否定总体呈正态分布的原假设。

    3/5

    Ryan-Joiner检验(R-J检验,类似于Shapiro-Wilk检验),是一种基于相关性的算法。R-J检验可得到一个相关系数,它越接近1就越表明数据和正态分布拟合得越好。A-D检验和R-J检验在正态性检验中具有相似的功效,而K-S检验的功效较弱。对于大样本的拟合度测试,通常使用卡方检验(卡方检验是一种基于概率密度函数的算法,不适合于小样本)会更好,因为卡方检测不需要分布参数的知识,并且卡方检验适用于连续和离散分布。Ryan-Joiner 正态性检验选择此项将执行 Ryan-Joiner 检验,此检验通过计算数据与数据的正态分值之间的相关性来评估正态性。如果相关系数接近 1,则总体就很有可能呈正态分布。Ryan-Joiner 统计量可以评估这种相关性的强度;如果它未达到适当的临界值,您将否定总体呈正态分布的原假设。此检验类似于 Shapiro-Wilk 正态性检验。

    4/5

    Kolmogorov-Smirnov检验(K-S检验),也是一种基于经验累积分布函数(ECDF)的算法,K-S检验最吸引人的特性是具有分布无关性,所以适用于任何连续分布,很适合小样本(当然也适合大样本)。但是由于K-S检验相对尾部而言,往往对分布中心更敏感,并且它的临界值并不依赖被测的特定分布,相对A-D检验而言它的灵敏度较低,所以很多的分析更愿意使用A-D 拟合度检验。Kolmogorov-Smirnov 正态性检验选择此项将执行正态性的 Kolmogorov-Smirnov 检验,此检验是将样本数据的经验累积分布函数与假设数据呈正态分布时期望的分布进行比较。如果实测差异足够大,该检验将否定总体呈正态分布的原假设。

    5/5

    总结:

    对这些检验的结果,我们都用 p 值进行判断,一般p值小于0.05,认为不符合正态分布,可以否定原假设,并断定总体呈非正态分布。一般来说Anderson-darling、Ryan-Joiner、Kolmogorov-Smirnov三种检验中只要有一种给出否定的结论,就应该判定该分布非正态。实际上AD检验即使通不过,但是另外两种能通过的话,也可以当成正态分布的,因为可以把它看成近似正态分布,这个与样本的多少有关。AD检验更适合小样本数量的检验。因此,有的时候AD通不过正态,其它两种能通过,也能把数据看作近似正态分布的

    注意事项

    样本容量(样本中个体的数目)仅为5~10也可以进行正态性检验。但是样本容量过少时,即使是正态,也会受到置疑。因为数据过少,随机误差影响会增大

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_422973.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-05 02:30:18  耗时:0.030
    0.0301s