偏导数存在的条件是什么
来源:网络收集 点击: 时间:2024-05-22【导读】:
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 fx(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数。
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作fy(x0,y0)。
偏导数性质
fxy与fyx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 fxy 与 fyx 都连续时,求导的结果与先后次序无关。
设f(x)在上连续,在(a,b)内具有一阶和二阶导数,那么:
1、若在(a,b)内f(x)0,则f(x)在上的图形是凹的;
2、若在(a,b)内f(x)0,则f(x)在上的图形是凸的。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、文章链接:http://www.1haoku.cn/art_825201.html
上一篇:浅显是什么意思
下一篇:如何注册网站域名?申请域名详细教程