广告合作
  • 今日头条

    今日头条

  • 百度一下

    百度一下,你就知道

  • 新浪网

    新浪网 - 提供新闻线索,重大新闻爆料

  • 搜狐

    搜狐

  • 豆瓣

    豆瓣

  • 百度贴吧

    百度贴吧——全球领先的中文社区

  • 首页 尚未审核订阅工具 订阅

    ▽算符运算公式是什么

    来源:网络收集  点击:  时间:2024-02-29
    【导读】:

    顺序:▽(A^2)=[偏x,偏y。偏z]A^2=[2A偏A偏x,2A偏A偏y,2A偏A偏z]=2A[偏A偏x,偏A偏y,偏A偏z]。

    ▽A=[偏A偏x,偏A偏y,偏A偏z]从而式子等于2A▽A=2AA▽=2A^2▽,即▽(A^2)=2A^2▽。

    梯度记做GRAD比较好理解,就是沿着某方向的变化率,算子▽直接作用在函数上。散度记做DIV是向量场的发散度,算子▽点乘向量函数。向量场通过封闭曲面外侧的流量,等于该曲面所围区域的散度总和。由散度为0可以推出向量场无源。

    定义

    这种数学形式,就被称作“算符”。 也就是说算符是测量/改变的数学形式。 那么这种数学形式就一定是作用在同样是数学形式的态函数上,例如▽。

    对于不同的系统,和不同的系统所可能具备的不同状态,我们就引入不同的态函数来描绘。 同理,对于不同类型的改变,干涉,测量,我们就引入不同类型的算符。

    而在狄拉克表示下(另一种数学化的方法),态函数的样子是狄拉克括号,这里就会引入一套新的针对算符的数学化的方法。

    Pauli表示下,系统被数学化为向量,向量化的态函数对应的算符又是什么呢? 可以想见,就是可以对向量进行操作的矩阵。 所以Pauli表示中算符称为了矩阵。

    本文关键词:

    版权声明:

    1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

    2、本站仅提供信息发布平台,不承担相关法律责任。

    3、若侵犯您的版权或隐私,请联系本站管理员删除。

    4、文章链接:http://www.1haoku.cn/art_173110.html

    相关资讯

    ©2019-2020 http://www.1haoku.cn/ 国ICP备20009186号05-06 11:13:45  耗时:0.027
    0.0266s